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This talk: Deep Learning

Using brain simulations:
- Make learning algorithms much better and easier to use.
- Make revolutionary advances in machine learning and Al.

Vision shared with many researchers:

E.g., Samy Bengio, Yoshua Bengio, Tom Dean, Jeff Dean, Nando de
Freitas, Jeff Hawkins, Geoff Hinton, Quoc Le, Yann LeCun, Honglak
Lee, Tommy Poggio, Marc’Aurelio Ranzato, Ruslan Salakhutdinov,
Josh Tenenbaum, Kai Yu, Jason Weston, ....

| believe this is our best shot at progress towards real Al.




What do we want computers to do with our data?

Images/video Label: “Motorcycle”
; . Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation

Andrew Ng




Computer vision is hard!

Andrew Ng




What do we want computers to do with our data?

Images/video Label: “Motorcycle”
; . Suggest tags
Image search

Speech recognition
Speaker identification
Music classification

Web search
Anti-spam
Machine translation

Machine learning performs well on many of these problems, but is a
lot of work. What is it about machine learning that makes it so hard
to use?

\ndrew Ng




Machine learning for image classification

“Motorcycle”

This talk: Develop ideas using images and audio.
|deas apply to other problems (e.g., text) too.

Andrew Ng




Why is this hard?

You see this:

130
140
115
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Machine learning and feature representations

Learning
algorithm

== Motorbikes
Raw image “Non”-Motorbikes

Andrew Ng




Machine learning and feature representations

Learning
algorithm

== Motorbikes
Raw image “Non”-Motorbikes

=

Andrew Ng




Machine learning and feature representations

Learning
algorithm

== Motorbikes
Raw image “Non”-Motorbikes

Andrew Ng




What we want

—handlebars

Feature Learning
representation algorithm
E.g., Does it have Handlebars? Wheels?

%= Motorbikes

Non”-Motorbikes Features

Handlebars

Andrew Ng




How Is computer perception done?

Images/video

Image Vision features Detection
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Audio Audio features Speaker ID

Text classification,
=) Machine translation,
Information retrieval,

Text features

Andrew Ng




Feature representations

Feature : Learning

Andrew Ng




Computer vision features

Normalized patch Spin image
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Audio features
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NLP features

§ SEM (<PAST SEES1> evl (NAME j1 “Jill") (THE di : (DOG1 d1)))
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NP SEM (THE d1 : (DOG1 d1)) BURNS FRY Ltd. JMiToront ofess 46 years old, was
VAR d1 name executive vice president and direct or of fixed income at this
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Pars' Coming up with features is difficult, time-
consuming, requires expert knowledge.

His father, Nick Begich

e “Applied machine learning” is basically
IS [ ature engineering.

O O O @)
Itstill hasn't turned up. It's why locators are now v v v v

required in all US planes.

Anaphora Part of speech

Ontologies (WordNet)

Andrew Ng




Feature representations

Feature : Learning

Andrew Ng




The “one learning algorithm” hypothesis

Auditory cortex learns to see

[Roe et al., 1992]

Andrew Ng




The “one learning algorithm” hypothesis

Somatosensory Cortex

i A =

y
F_.- y i
y
— Fi

.._F .I’

o, e
|

Somatosensory cortex learns to see

[Metin & Frost, 1989]
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Sensor representations in the brain

Human echolocation (sonar)

Haptic belt: Direction sense Implanting a 3 eye

[BrainPort; Welsh & Blasch, 1997; Nagel et al., 2005; Constantine-Paton & Law, 2009]




Feature learning problem

* Given a 14x14 image patch x, can represent
it using 196 real numbers.

\
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93
87
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48

* Problem: Can we find a learn a better
feature vector to represent this?

Andrew Ng




First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.
Neurons in V1 typically modeled as edge detectors:

-

Neuron #1 of visual cortex Neuron #2 of visual cortex
(model) (model)

Andrew Ng




Learning sensor representations

Sparse coding (Olshausen & Field,1996)
Input: Images x(M, x@, ..., xm (each in R"xn)

Learn: Dictionary of bases ¢, ¢,, ..., ¢, (also R"*n),
so that each input x can be approximately
decomposed as:

k

mZaj(I)j

=1

s.t. a’s are mostly zero ("sparse”)




Sparse coding illustration

Natural Images Learned bases (¢; _ ¢g,): “Edges”
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Test example

.f_::: ~ (0.8 * |

X ~08% ¢+ 03% by  FO05*F b
[a,, .., ag] =1[0,0,..,00.8,0,..,00.3,0,..,0,0.5, 0]

(feature represe ntation) More succinct, higher-level,
representation.




More examples

(I)28 (1)37

Represent as: [a,:=0.6, a,4=0.8, az; = 0.4].

s 0.,

Represent as: [a;=1.3, a,5=0.9, a,, = 0.3].

» Method “invents” edge detection.

« ]|Gives a more succinct, higher-level representation than the raw
pixels.

* Quantitatively similar to primary visual cortex (area V1) in brain.

Andrew Ng




Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.

[Evan Smith & Mike Lewicki, 2006] Andrew Ng




Sparse coding applied to audio

Image shows 20 basis functions learned from unlabeled audio.

[Evan Smith & Mike Lewicki, 2006] Andrew Ng



Learning feature hierarchies

Higher layer
(Combinations of edges;
cf V2)

“Sparse coding”
(edges; cf. V1)

Input image (pixels)

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]




Learning feature hierarchies

Higher layer
(Model V3?)

Higher layer
(Model V27?)

Model V1

Input image

[Technical details: Sparse autoencoder or sparse version of Hinton’s DBN.]
[Lee, Ranganath & Ng, 2007]




Hierarchical Sparse coding (Sparse DBN): Trained on face images

Training set: Aligned
images of faces.
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object models

object parts
(combination
of edges)

edges

[Honglak Lee]







Unsupervised feature learning

Testing:
What is this?

Unlabeled images (use to learn features)

[Lee, Raina and Ng, 2006; Raina, Lee, Battle, Packer & Ng, 2007]




Video Activity recognition (Hollywood 2 benchmark)

' ' f

Hessian + ESURF [Williems et al 2008]

Harris3D + HOG/HOF [Laptev et al 2003, 2004]
Cuboids + HOG/HOF [Dollar et al 2005, Laptev 2004]
Hessian + HOG/HOF [Laptev 2004, Williems et al 2008]
Dense + HOG / HOF [Laptev 2004]

Cuboids + HOG3D [Klaser 2008, Dollar et al 2005]

Unsupervised feature learning (our method)

Unsupervised feature learning significantly improves
on the previous state-of-the-art.

[Le, Zhou & Ng, 2011]



Audio

TIMIT Phone classification TIMIT Speaker identification

Prior art (Clarkson et al.,1999) 79.6% Prior art (Reynolds, 1995) 99.7%

Stanford Feature learning 80.3% Stanford Feature learning 100.0%

Images

CIFAR Object classification NORB Object classification

Prior art (Ciresan et al., 2011) 80.5% Prior art (Scherer et al., 2010) 94.4%

Stanford Feature learning 82.0% Stanford Feature learning 95.0%

Video

Prior art (Laptev et al., 2004) 48% Prior art (Liu et al., 2009) 71.2%

Stanford Feature learning 53% Stanford Feature learning 75.8%

Prior art (Wang et al., 2010) 92.1% Prior art (Wang et al., 2010) 85.6%

Stanford Feature learning 93.9% Stanford Feature learning 86.5%

Text/NLP

Paraphrase detection Sentiment (MR/MPQA data)

Prior art (Das & Smith, 2009) 76.1% Prior art (Nakagawa et al., 2010) 77.3%

Stanford Feature learning 76.4% Stanford Feature learning 77.7%




HHow do You build a ﬁyﬁ ACCUTACY
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Supervised Learning: Labeled data

» Choices of learning algorithm:
— Memory based
— Winnow
— Perceptron
— Naive Bayes
- SVM
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 \What matters the most?

'I:raining se_t_size (miII_i;)_ns)
[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng




Unsupervised Learning

Large numbers of features is critical. The specific learning algorithm is
important, but ones that can scale to many features also have a big
advantage.

a0

- kmeans (tri) raw
kmeans (hard) raw
- gmm raw
- autoencoder raw
- rbm raw
—&— kmeans (tri) white
kmeans (hard) white ||
—— gmm white
—e— autoencoder white
—— rbm white
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[Adam Coates]




Learning from Labeled data
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Training Data




Google-scale Parallel learning

O Machine (Model Partition)

Training Data

[Adam Coates]



Google-scale Parallel learning

() Machine (Model Partition)
Training Data O Core

[Adam Coates]



Google-scale Parallel learning

Training Data

Unsupervised or Supervised Obijective

Minibatch Stochastic Gradient Descent
(SGD)

Model parameters sharded by partition
10s, 100s, or 1000s of cores per model

[Adam Coates]



Basic DistBelief Model Training

Training Data

Unsupervised or Supervised Obijective

Minibatch Stochastic Gradient Descent
(SGD)

Model parameters sharded by partition
10s, 100s, or 1000s of cores per model



Basic DistBelief Model Training

Model

Training Data

Parallelize across ~100 machines
(~1600 cores).

But training is still slow with large
data sets.

Add another dimension of
parallelism, and have multiple model
Instances in parallel.



Two Approaches to Multi-Model Training

(1) Downpour: Asynchronous Distributed SGD

(2) Sandblaster: Distributed L-BFGS
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Asynchronous Distributed Stochastic Gradient
Descent

Parameter Server P P= p=HpApt Ap”
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Asynchronous Distributed Stochastic Gradient
Descent

Parameter Server P =p + Ap
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Shards




Asynchronous Distributed Stochastic Gradient
Descent

Parameter Server

OOCO0C0
/[ ]
0d 00
Od 00

Slave
models

Data Shards
From an engineering standpoint, superior to a single

model with the same number of total machines:

® Better robustness to individual slow machines

® Makes forward progress even during
evictions/restarts



L-BFGS: a Big Batch Alternative to SGD.

Async-SGD

first derivatives only
many small steps

mini-batched data
(10s of examples)

tiny compute and data
requirements per step

theory is dicey

at most 10s or 100s of
model replicas

L-BFGS

first and second derivatives
larger, smarter steps

mega-batched data
(millions of examples)

huge compute and data
requirements per step

strong theoretical grounding
1000s of model replicas



L-BFGS: a Big Batch Alternative to SGD.

Leverages the same parameter server implementation as Async-
SGD, but uses it to shard computation within a mega-batch.

Coordinator
(small
messages)

Model
Workers

Parameter Server

OOOOOOS

00 00| OO
OO0 100 10O

Data

Some current numbers:

®20,000 cores in a single
cluster

®up to 1 billion data items /
mega-batch (in ~1 hour)

More network friendly at large scales than Async-SGD.

The possibility of running on multiple data centers...



Acoustic Modeling for Speech Recognition

8000-label Softmax (000000000000000000)
One or more hidden layers (©CO0000000000)

of a few thousand nodes each. (©90000000000)

|

11 Frames of 40-value Log Energy Power I
Spectra and the label for central frame




Acoustic Modeling for Speech Recognition

Async SGD and L-BFGS can

both speed up model training.

Accuracy on Test Set To reach the same model

' ' | | quality DistBelief reached in 4
days took 55 days using a
GPU....

25

DistBelief can support much
larger models than a GPU
(useful for unsupervised

—A-56D learning).

5t GPU

—©— Downpour SGD

—&— Downpour SGD w/Adagrad
Sandblaster L-BFGS

80 100 120

Average Frame Accuracy (%)

0 EI[] 4.0 . 60
Time (hours)



Speech recognition on Android

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’'s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTubel!

What's the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

pictures of cats

With the launch of the latest Android platform release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to
recognize your speech.

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late

Andrew Ng



Application to Google Streetview

[with Yuval Netzer, Julian Ibarz]



Learning from Unlabeled data




Supervised Learning

» Choices of learning algorithm:
— Memory based
— Winnow
— Perceptron
— Naive Bayes
- SVM
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 \What matters the most?

'I:raining se_t_size (miII_i;)_ns)
[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng




Unsupervised Learning

Large numbers of features is critical. The specific learning algorithm is
important, but ones that can scale to many features also have a big
advantage.

a0

- kmeans (tri) raw
kmeans (hard) raw
- gmm raw
- autoencoder raw
- rbm raw
—&— kmeans (tri) white
kmeans (hard) white ||
—— gmm white
—e— autoencoder white
—— rbm white
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50 thousand 32x32 images

10 million parameters




10 million 200x200 images

1 billion parameters




Training procedure

What features can we learn if we train a massive model on a massive amount
of data. Can we learn a “grandmother cell”?

* Train on 10 million images (YouTube)
1000 machines (16,000 cores) for 1 week.

* Test on novel images




The face neuron

Top stimuli from the test set Optimal stimulus
by numerical optimization

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Frequency

Feature value

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Invariance properties

best feature
threshold

N

Feature response

0 pixels 20 pixels
>

Horizontal shifts

Feature response

3D rotation angle

Feature response

Feature response

A

L

0 pixels 20 pixels
>

Vertical shifts

1x

Scale factor

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Cat neuron

Top Stimuli from the test set Average of top stimuli from test set




Best stimuli

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Best stimuli

Feature 6

Feature 7

Feature 8

Feature 9

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Best stimuli

Feature 10

Feature 11

Feature 13

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




ImageNet classification

22,000 categories
14,000,000 images

Hand-engineered features (SIFT, HOG, LBP),
Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




ImageNet classification: 22,000 classes

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

putterTly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea




Unsupervised feature learning (Self-taught learning)

Testing:
What is this?

[Lee, Raina and Ng, 2006; Raina, Lee, Battle, Packer & Ng, 2007]



0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Discussion: E@ineerinﬂ vs, Data




Discussion: Enﬂineerinﬂ vs, Data

Contribution to performance

Human Data/
ingenuity learning




Discussion: Enﬂineerinﬂ vs, Data

Contribution to performance

Learning/data




Deep Learning

* Deep Learning: Lets learn our features.

 Discover the fundamental computational principles that underlie
perception.

 Scaling up has been key to achieving good performance.
* Recursive representations for language.

* Online tutorial:
http://deeplearning.stanford.edu/wiki

Stanford

Adam Coates Quoc Le

y

b

Kai Chen Greg Corrado Jeff Dean Matthieu Devin Andrea Frome Rajat Monga Marc’Aurelio Paul Tucker Kay Le
Ranzato

Andrew Ng







Feature representations of words

For each word, compute an n-dimensional feature vector for it.
[Distributional representations, or Bengio et al., 2003, Collobert & Weston, 2008.]

2-d embedding example below, but in practice use ~100-d embeddings.

2
Monday[ 4 ]

Tuesday |21
/)

OO -~~000O0

Britain [ ]
France e
E5] Monday

10

X1

On Monday, Britain .

———EAEOE

N

CO OO0 —~0

s

Britain

Andrew Ng




“Generic” hierarchy on text doesn’t make sense

Node has to represent
sentence fragment “cat
sat on.” Doesn’'t make
sense.

0000 B

sat on the mat.

Feature representation

for words
Andrew Ng




What we want (illustration)

This node’s job is
to represent
“on the mat.”

oG] ) ) () ()

on the mat.

Andrew Ng




What we want (illustration)

‘) S This node’s job is

to represent
“on the mat.”

oG] ) ) () ()

on the mat.

Andrew Ng




What we want (illustration)

¢ The day after my birthday
Monday

Tuesday The country of my birth
Britain

France

9 10

JEE) () ) B E)E)

day after my birthday, ... The country of my




Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng




Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng




Learning recursive representations

Basic computational unit: Neural Network This node’s job is
that inputs two candidate children’s to represent
representations, and outputs: “on the mat.”

* Whether we should merge the two nodes.

* The semantic representation if the two

nodes are merged.

O

Neural
Network

Andrew Ng




Parsing a sentence

Neural Neural Neural NEUIEL NI
Network Network Network Network Network

)0 B )G

on the mat.

Andrew Ng




Parsing a sentence

Neural Neural Neural
Network Network Network

Andrew Ng




Parsing a sentence

Neural Neural
Network Network

[Socher, Manning & Ng]




Parsing a sentence

()

SO UNGEEE

The cat sat the mat.




Bad News

Something said

Gains and good news

Unknown words
which are cities

Finding Similar Sentences

« Each sentence has a feature vector representation.
» Pick a sentence (“center sentence”) and list nearest neighbor sentences.
« Often either semantically or syntactically similar. (Digits all mapped to 2.)

Both took further
hits yesterday

| had calls all night
long from the
States, he said

Fujisawa gained 22
to 2,222

Columbia, S.C

B -

We 're in for a lot of turbulence ...

BSN currently has 2.2 million common shares outstanding
This is panic buying

We have a couple or three tough weeks coming

Our intent is to promote the best alternative, he says

We have sufficient cash flow to handle that, he said

Currently, average pay for machinists is 22.22 an hour, Boeing
said

Profit from trading for its own account dropped, the securities
firm said

Mochida advanced 22 to 2,222
Commerzbank gained 2 to 222.2

Paris loved her at first sight

Profits improved across Hess's businesses

Greenville , Miss
UNK, Md

UNK, Miss
UNK, Calif




Declining to comment
= not disclosing

Large changes in sales
or revenue

Negation of different
types

People in bad
situations

Finding Similar Sentences

Hess declined to
comment

Sales grew almost 2
% to 222.2 million
from 222.2 million

There's nothing
unusual about
business groups
pushing for more
government
spending

We were lucky

b EE el ol - . o

PaineWebber declined to comment
Phoenix declined to comment
Campeau declined to comment
Coastal wouldn't disclose the terms

Sales surged 22 % to 222.22 billion yen from 222.22 billion
Revenue fell 2 % to 2.22 billion from 2.22 billion

Sales rose more than 2 % to 22.2 million from 22.2 million
Volume was 222.2 million shares , more than triple recent levels

We don't think at this point anything needs to be said

It therefore makes no sense for each market to adopt different
circuit breakers

You can't say the same with black and white

| don't think anyone left the place UNK UNK

It was chaotic
We were wrong
People had died
They still are

Andrew Ng



Application: Paraphrase Detection

» Task: Decide whether or not two sentences are paraphrases of each
other. (MSR Paraphrase Corpus)

Baseline

Rus et al., (2008)

Mihalcea et al., (2006)

Islam et al. (2007)

Qiu et al. (2006)

Fernando & Stevenson (2008) (WordNet based features)
Das et al. (2009)

Wan et al (2006) (many features: POS, parsing, BLEU, etc.)

Stanford Feature Learning

Andrew Ng









[Quoc V. Le, Marc'Aurelio Ranzato, Rajat Monga,
Greg Corrado, Matthieu Devin, Kai Chen, Jeff Dean]




Local Receptive Field networks

Machine #1 Machine #2 Machine #3 Machine #4

features

Le, et al., Tiled Convolutional Neural Networks. NIPS 2010

Andrew Ng




Asynchronous Parallel SGD

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 5 yew ng




Asynchronous Parallel SGD

Parameter server B B

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 5 yew ng




Asynchronous Parallel SGD

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012 5 yew ng




Training procedure

What features can we learn if we train a massive model on a massive
amount of data. Can we learn a “grandmother cell”?

* Train on 10 million images (YouTube)

« 1000 machines (16,000 cores) for 1 week.
* 1.15 billion parameters

« Test on novel images

Training set (YouTube) Test set (FITW + ImageNet)

Andrew Ng




Andrew Ng

stimulus by numerical optimization

Optimal
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Top Stimuli from the test set




Random distractors

Andrew Ng




Feature response

Feature response

Invariance properties

best feature
threshold

N

+15 pixels

>
Horizontal shift

bhest feature
— threshold

3D rotation angle

Feature response

Feature response

A

best feature
— threshold

N

\
+15 pixels

>
Vertical shift

best feature
threshold

AN

1.6x

>

Scale factor
Andrew Ng




Cat neuron

Top Stimuli from the test set Average of top stimuli from test set

Andrew Ng




ImageNet classification

20,000 categories
16,000,000 images

Others: Hand-engineered features (SIFT, HOG, LBP),

Spatial pyramid, SparseCoding/Compression

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Best stimuli

Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Best stimuli

Feature 6

Feature 7

Feature 8

Feature 9

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Best stimuli

Feature 10

Feature 11

Feature 13

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




20,000 is a lot of categories...

smoothhound, smoothhound shark, Mustelus mustelus
American smooth dogfish, Mustelus canis

Florida smoothhound, Mustelus norrisi

whitetip shark, reef whitetip shark, Triaenodon obseus
Atlantic spiny dogfish, Squalus acanthias

Pacific spiny dogfish, Squalus suckleyi

hammerhead, hammerhead shark

smooth hammerhead, Sphyrna zygaena

smalleye hammerhead, Sphyrna tudes

shovelhead, bonnethead, bonnet shark, Sphyrna tiburo
angel shark, angelfish, Squatina squatina, monkfish
electric ray, crampfish, numbfish, torpedo

smalltooth sawfish, Pristis pectinatus

guitarfish

roughtail stingray, Dasyatis centroura

putterTly ray

eagle ray

spotted eagle ray, spotted ray, Aetobatus narinari
cownose ray, cow-nosed ray, Rhinoptera bonasus
manta, manta ray, devilfish

Atlantic manta, Manta birostris

devil ray, Mobula hypostoma

grey skate, gray skate, Raja batis

little skate, Raja erinacea




0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




0.005% 9.5%

Random guess State-of-the-art Feature learning
(Weston, Bengio ‘11)  From raw pixels

ImageNet 2009 (10k categories): Best published result: 17%
(Sanchez & Perronnin ‘11 ),
Our method:

Using only 1000 categories, our method > 50%

Le, et al., Building high-level features using large-scale unsupervised learning. ICML 2012




Speech recognition on Android

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’'s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTubel!

What's the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

pictures of cats

With the launch of the latest Android platform release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to
recognize your speech.

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late

Andrew Ng



Application to Google Streetview

[with Yuval Netzer, Julian Ibarz]



Scaling up with HPC

“Cloud” infrastructure GPUs with CUDA

|

Many inexpensive nodes. 1 very fast node.
Comm. bottlenecks, node failures. Limited memory; hard to scale out.

Infiniband fabric

HPC cluster: GPUs with Infiniband
Difficult to program---lots of MPIl and CUDA code.

Andrew Ng




Stanford GPU cluster

 Current system

— 64 GPUs in 16 machines.
— Tightly optimized CUDA for UFL/DL operations.
— 47x faster than single-GPU implementation.
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— Train 11.2 billion parameter, 9 layer neural network in < 4 days.
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Cat face neuron

Random distractors

Cat faces

Andrew Ng



Control experiments

Concept Random | Random | Best Best first Best Best neuron without
guess weights linear filter | layer neuron | neuron | contrast normalization

Andrew Ng




Visualization

Top Stimuli from the test set Optimal stimulus by numerical optimization
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Pedestrian neuron

Random distractors

Pedestrians

Andrew Ng







Unsupervised Feature Learning Summary

* Deep Learning and Self-Taught learning: Lets learn rather than
manually design our features.

* Discover the fundamental computational principles that
underlie perception?

» Sparse coding and deep versions very successful on vision
and audio tasks. Other variants for learning recursive
representations.

* To get this to work for yourself, see online tutorial: ﬂgggyggg
http://deeplearning.stanford.edu/wiki or go/brain SPR—

{ AE

Adam Coates Quoc Le Honglak Lee  Andrew Saxe Andrew Maas Chris Manning Jiquan Ngiam Richard Socher  Will Zou
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Kai Chen Greg Corrado Jeff Dean Matthieu Devin Andrea Frome Rajat Monga Marc’Aurelio Paul Tucker Kay Le
Ranzato
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Feature representations of words

Imagine taking each word, and computing an n-dimensional feature vector for it.
[Distributional representations, or Bengio et al., 2003, Collobert & Weston, 2008.]

2-d embedding example below, but in practice use ~100-d embeddings.

2
Monday[ 4 ]

Tuesday |21
/)

QOO ~~000O0
CO OO0 —~0

Brltaln[ ]
France o ) _‘_
h5] Monday  Britain

10

X1

On Monday, Britain .

———EAEOE

Andrew Ng




“Generic” hierarchy on text doesn’t make sense

Node has to represent
sentence fragment “cat
sat on.” Doesn’'t make
sense.

0000 B

sat on the mat.

Feature representation

for words
Andrew Ng




What we want (illustration)

This node’s job is
to represent
“on the mat.”

oG] ) ) () ()

on the mat.

Andrew Ng




What we want (illustration)

‘) S This node’s job is

to represent
“on the mat.”

oG] ) ) () ()

on the mat.

Andrew Ng




What we want (illustration)

¢ The day after my birthday
Monday

Tuesday The country of my birth
Britain

France

9 10

JEE) () ) B E)E)

day after my birthday, ... The country of my




Learning recursive representations

‘) S This node’s job is

to represent
“on the mat.”

oG] ) ) () ()

on the mat.

Andrew Ng




Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng




Learning recursive representations

This node’s job is
to represent
“on the mat.”

Andrew Ng




Learning recursive representations

Basic computational unit: Neural Network This node’s job is
that inputs two candidate children’s to represent
representations, and outputs: “on the mat.”

* Whether we should merge the two nodes.

* The semantic representation if the two

nodes are merged.

O

Neural
Network

Andrew Ng




Parsing a sentence

Neural Neural Neural NEUIEL NI
Network Network Network Network Network

)0 B )G

on the mat.

Andrew Ng




Parsing a sentence

Neural Neural Neural
Network Network Network

Andrew Ng




Parsing a sentence

Neural Neural
Network Network

[Socher, Manning & Ng]




Parsing a sentence

()

SO UNGEEE

The cat sat the mat.




Bad News

Something said

Gains and good
news

Unknown words
which are cities

Finding Similar Sentences

« Each sentence has a feature vector representation.
» Pick a sentence (“center sentence”) and list nearest neighbor sentences.
« Often either semantically or syntactically similar. (Digits all mapped to 2.)

Both took further

hits yesterday

| had calls all
night long from
the States, he
said

Fujisawa gained
22 to0 2,222

Columbia, S.C

PWwhE e BN

We 're in for a lot of turbulence ...

BSN currently has 2.2 million common shares
outstanding

This is panic buying

We have a couple or three tough weeks coming

Our intent is to promote the best alternative, he says
We have sufficient cash flow to handle that, he said
Currently, average pay for machinists is 22.22 an hour,
Boeing said

Profit from trading for its own account dropped, the
securities firm said

Mochida advanced 22 to 2,222
Commerzbank gained 2 to 222.2

Paris loved her at first sight

Profits improved across Hess's businesses

Greenville , Miss
UNK, Md

UNK , Miss
UNK , Calif




Finding Similar Sentences

Bad News Both took further . We 'rein for a lot of turbulence ...
hits yesterday . BSN currently has 2.2 million common shares outstanding
This is panic buying
We have a couple or three tough weeks coming

Something said | had calls all night . Ourintent is to promote the best alternative, he says
long from the . We have sufficient cash flow to handle that, he said
States, he said . Currently, average pay for machinists is 22.22 an hour, Boeing
said
Profit from trading for its own account dropped, the securities
firm said

Mochida advanced 22 to 2,222
Commerzbank gained 2 to 222.2

Paris loved her at first sight

Profits improved across Hess's businesses

Gains and good news = Fujisawa gained 22
to 2,222

Greenville , Miss
UNK, Md

UNK , Miss
UNK, Calif

Unknown words Columbia, S.C
which are cities

A -
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Finding Similar Sentences

PaineWebber declined to comment
Phoenix declined to comment
Campeau declined to comment
Coastal wouldn't disclose the terms

Sales surged 22 % to 222.22 billion yen from 222.22 billion
Revenue fell 2 % to 2.22 billion from 2.22 billion

Sales rose more than 2 % to 22.2 million from 22.2 million
Volume was 222.2 million shares , more than triple recent
levels

Declining to Hess declined to
comment = not comment
disclosing

Large changes in Sales grew almost

sales or revenue 2% to 222.2
million from 222.2
million

N -

Negation of There's nothing . We don't think at this point anything needs to be said
different types unusual about . It therefore makes no sense for each market to adopt
business groups different circuit breakers
pushing for more . You can't say the same with black and white
government . |l don't think anyone left the place UNK UNK
spending

People in bad We were lucky . It was chaotic

situations . We were wrong
People had died
They still are

Andrew Ng




Experiments

* No linguistic features. Train only using the structure and words of WSJ
training trees, and word embeddings from (Collobert & Weston, 2008).

Parser evaluation dataset: Wall Street Journal (standard splits for training
and development testing).

Greedy Recursive Neural Network (RNN)

Greedy, context-sensitive RNN

Greedy, context-sensitive RNN + category classifier
Left Corner PCFG, (Manning and Carpenter, '97)

CKY, context-sensitive, RNN + category classifier (our work)
Current Stanford Parser, (Klein and Manning, '03)

Andrew Ng




Application: Paraphrase Detection

» Task: Decide whether or not two sentences are paraphrases of each
other. (MSR Paraphrase Corpus)

Baseline

Rus et al., (2008)

Mihalcea et al., (2006)

Islam et al. (2007)

Qiu et al. (2006)

Fernando & Stevenson (2008) (WordNet based features)
Das et al. (2009)

Wan et al (2006) (many features: POS, parsing, BLEU, etc.)

Stanford Feature Learning

Andrew Ng



Parsing sentences and parsing images

Parsing Natural Language Sentences
S

A small crowd Asmall crowd

i ietly enters
- NP VP quietly ent
quietly enters the adige  cuxesw e the historic

historic church. Asmall  quietly SN, church
CrOWd enters Det. Ad " il Semantic

I" ‘ ’ £°\ (==F*=>\ pepresentations
o | il (s

Indices
the historic/ [(church] Words

Parsing Natural Scene Images
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Semantic
| Representations
| Features
| Segments

Each node in the hierarchy has a “feature vector” representation. Andrew Ng



Nearest neighbor examples for image patches

Each node (e.g., set of merged superpixels) in the hierarchy has a feature vector.
Select a node (“center patch”) and list nearest neighbor nodes.
|.e., what image patches/superpixels get mapped to similar features?

Selected patch Nearest Neighbors

Andrew Ng




Multi-class segmentation (Stanford background dataset)

L:

W sky .tree .raad .qraas .water .bldg .mntn fg obj.

Accuracy

Pixel CRF (Gould et al., ICCV 2009) 74.3
Classifier on superpixel features 75.9
Region-based energy (Gould et al., ICCV 2009) 76.4
Local labelling (Tighe & Lazebnik, ECCV 2010) 76.9
Superpixel MRF (Tighe & Lazebnik, ECCV 2010) 77.5
Simultaneous MRF (Tighe & Lazebnik, ECCV 2010) 77.5

Stanford Feature learning (our method) 78.1

Andrew Ng



Multi-class Segmentation MSRC dataset: 21 Classes
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Accuracy
TextonBoost (Shotton et al., ECCV 2006)

Framework over mean-shift patches (Yang et al., CVPR 2007)
Pixel CRF (Gould et al., ICCV 2009)

Region-based energy (Gould et al., IJCV 2008)

Stanford Feature learning (out method)
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Supervised Learning

» Choices of learning algorithm:
— Memory based
— Winnow ﬁ
- Perceptron o Training set size
— Naive Bayes

- SVM

Accuracy

 \What matters the most?

[Banko & Brill, 2001]

“It's not who has the best algorithm that wins.
It's who has the most data.”

Andrew Ng




Receptive fields learned by several algorithms

The primary goal of unsupervised feature learning: To discover Gabor
functions.

K-means (with and without whitening) Gaussian mixture model (with and without whitening)

Andrew Ng



Analysis of single-layer networks

« Many components in feature learning system:
— Pre-processing steps (e.g., whitening)
— Network architecture (depth, number of features)
— Unsupervised training algorithm
— Inference / feature extraction
— Pooling strategies

 Which matters most?

— Much emphasis on new models + new algorithms. [s this the
right focus?

— Many algorithms hindered by large number of parameters to
tune.

— Simple algorithm + carefully chosen architecture = state-of-the-
art.

— Unsupervised learning algorithm may not be most important part.

Andrew Ng




Unsupervised Feature Learning

Many choices in feature learning algorithms;
— Sparse coding, RBM, autoencoder, etc.
— Pre-processing steps (whitening)

— Number of features learned
— Various hyperparameters.

 \What matters the most?

Andrew Ng




Unsupervised feature learning

Most algorithms learn Gabor-like edge detectors.

Sparse auto-encoder

Andrew Ng




Unsupervised feature learning

Weights learned with and without whitening.

with whitening without whitening with whitening without whitening

2wl 8 L

Sparse auto-encoder Sparse RBM

with whitening without whitening with whitening without whitening

K-means Gaussian mixture model

Andrew Ng




Scaling and classification accuracy (CIFAR-10)

Performance for Raw and Whitened Inputs
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